Search a number
a-pointer primes
A prime number  $p$  is called a-pointer if the next prime number can be obtained adding  $p$  to its sum of digits (here the 'a' stands for additive).

For example, 293 is an a-pointer prime since the next prime is equal to 293 + 2 + 9 + 3 = 307.

The first a-pointer primes are 11, 13, 101, 103, 181, 293, 631, 701, 811, 1153, 1171, 1409, 1801, 1933, 2017, 2039, 2053, 2143, 2213, 2521, 2633, 3041, 3089, 3221, 3373, 3391, 3469, 3643, 3739, 4057, 4231, 5153, 5281, 5333, 5449, 5623, 5717, 6053, 6121, 6301, 7043, 7333, 8101 more terms

A-pointer primes can also be... (you may click on names or numbers and on + to get more values)

aban 11 13 101 + 9998000731 9999000709 alt.fact. 101 alternating 101 103 181 + 89878981 89892169 amenable 13 101 181 + 999960781 999968341 apocalyptic 1933 2039 2053 + 29311 29641 arithmetic 11 13 101 + 9998333 9999347 bemirp 198901 18991981 110098601 + 1191110161 1601169611 c.decagonal 11 101 5281 + 9952714201 9988438601 c.heptagonal 1933 41203 114031 + 8805914041 8922870503 c.pentagonal 181 19141 126001 + 7796520451 8604688891 c.square 13 181 2521 + 9604287013 9699319921 c.triangular 631 108139 145549 + 9495764491 9890281801 Chen 11 13 101 + 99980597 99986539 congruent 13 101 103 + 9996373 9998333 Cunningham 101 8101 22501 + 9861284417 9926136901 Curzon 293 1409 5333 + 199702253 199816073 cyclic 11 13 101 + 9998333 9999347 de Polignac 701 2213 3643 + 99934301 99951043 deficient 11 13 101 + 9998333 9999347 dig.balanced 11 3221 8543 + 199919701 199971077 economical 11 13 101 + 19993733 19993951 emirp 13 701 1153 + 199962031 199971329 equidigital 11 13 101 + 19993733 19993951 esthetic 101 21212101 23210101 Eulerian 11 evil 101 293 811 + 999992447 999996407 fibodiv 3089 Fibonacci 13 Friedman 83357 216023 551423 + 937511 937537 good prime 11 101 2521 + 198461261 198463511 happy 13 103 293 + 9936803 9951101 hex 631 1801 9241 + 9769756267 9930310867 Hogben 13 24181 121453 + 9148826851 9487636621 Honaker 1933 6301 41131 + 998552251 998963701 iban 11 101 103 + 741347 777317 iccanobiF 13 idoneal 13 inconsummate 3041 3221 5153 + 979481 995801 Jacobsthal 11 junction 101 103 1409 + 99852241 99951043 katadrome 631 8543 Lucas 11 lucky 13 631 1801 + 9840667 9923227 m-pointer 15121 magnanimous 11 101 metadrome 13 3469 123457 modest 13 103 811 + 1987090909 1989233333 nialpdrome 11 631 811 + 9999633211 9999875321 nude 11 oban 11 13 811 odious 11 13 103 + 999968341 999980231 Ormiston 114031 163697 227131 + 1998757273 1999206271 palindromic 11 101 181 + 955606559 967828769 palprime 11 101 181 + 955606559 967828769 pancake 11 631 2017 + 9338046131 9584408927 panconsummate 11 pandigital 11 partition 11 101 pernicious 11 13 103 + 9994223 9999347 Pierpont 13 1153 plaindrome 11 13 3469 + 3344566669 5666677889 prime 11 13 101 + 9999974011 9999993463 primeval 13 Proth 13 1153 1409 + 9666035713 9767878657 repdigit 11 repunit 13 24181 121453 + 9148826851 9487636621 self 2213 3089 4057 + 999992447 999996407 self-describing 32162321 1210444141 1733221531 + 4144151741 4144171541 sliding 11 101 star 13 181 2053 + 8752460653 9457731037 strobogrammatic 11 101 181 161111191 strong prime 11 101 631 + 99953221 99980597 super-d 181 631 3373 + 9978041 9978131 tribonacci 13 trimorphic 574218751 truncatable prime 13 293 3373 + 9363243613 9459642683 twin 11 13 101 + 999877519 999905971 uban 11 13 2000093 + 9098000059 9099000089 Ulam 11 13 2633 + 9836039 9902293 undulating 101 181 upside-down 11946199 12991189 19537519 + 9932918711 9971739311 weak prime 13 103 181 + 99986539 99998611 weakly prime 33051769 48441331 74543663 + 9915415343 9960215141 Zuckerman 11 zygodrome 11 4443311 33322111 + 8882244499 9922288811