COOKIE CONSENT: By continuing to browse my site you agree to its use of cookies. OK or Tell me more
Search a number
cyclic numbers
A number n such that n and φ(n) have no common prime factors. more

The first 600 cyclic numbers :
1, 2, 3, 5, 7, 11, 13, 15, 17, 19, 23, 29, 31, 33, 35, 37, 41, 43, 47, 51, 53, 59, 61, 65, 67, 69, 71, 73, 77, 79, 83, 85, 87, 89, 91, 95, 97, 101, 103, 107, 109, 113, 115, 119, 123, 127, 131, 133, 137, 139, 141, 143, 145, 149, 151, 157, 159, 161, 163, 167, 173, 177, 179, 181, 185, 187, 191, 193, 197, 199, 209, 211, 213, 215, 217, 221, 223, 227, 229, 233, 235, 239, 241, 247, 249, 251, 255, 257, 259, 263, 265, 267, 269, 271, 277, 281, 283, 287, 293, 295, 299, 303, 307, 311, 313, 317, 319, 321, 323, 329, 331, 335, 337, 339, 341, 345, 347, 349, 353, 359, 365, 367, 371, 373, 377, 379, 383, 389, 391, 393, 395, 397, 401, 403, 407, 409, 411, 413, 415, 419, 421, 427, 431, 433, 435, 437, 439, 443, 445, 447, 449, 451, 455, 457, 461, 463, 467, 469, 473, 479, 481, 485, 487, 491, 493, 499, 501, 503, 509, 511, 515, 517, 519, 521, 523, 527, 533, 535, 537, 541, 545, 547, 551, 553, 557, 559, 561, 563, 565, 569, 571, 573, 577, 581, 583, 587, 589, 591, 593, 595, 599, 601, 607, 611, 613, 617, 619, 623, 629, 631, 635, 641, 643, 647, 649, 653, 659, 661, 665, 667, 671, 673, 677, 679, 681, 683, 685, 691, 695, 697, 699, 701, 703, 705, 707, 709, 713, 717, 719, 721, 727, 731, 733, 739, 743, 745, 749, 751, 753, 757, 761, 763, 767, 769, 771, 773, 779, 781, 785, 787, 789, 793, 795, 797, 799, 803, 805, 807, 809, 811, 815, 817, 821, 823, 827, 829, 835, 839, 843, 851, 853, 857, 859, 863, 865, 869, 871, 877, 879, 881, 883, 885, 887, 893, 895, 899, 901, 907, 911, 913, 917, 919, 923, 929, 933, 937, 941, 943, 947, 949, 951, 953, 957, 959, 965, 967, 971, 973, 977, 983, 985, 989, 991, 995, 997, 1001, 1003, 1007, 1009, 1013, 1019, 1021, 1031, 1033, 1037, 1039, 1041, 1043, 1049, 1051, 1057, 1059, 1061, 1063, 1067, 1069, 1073, 1077, 1079, 1087, 1091, 1093, 1097, 1099, 1103, 1105, 1109, 1111, 1115, 1117, 1121, 1123, 1129, 1133, 1135, 1139, 1141, 1145, 1147, 1149, 1151, 1153, 1157, 1159, 1163, 1165, 1167, 1169, 1171, 1173, 1177, 1181, 1187, 1189, 1193, 1195, 1199, 1201, 1203, 1207, 1211, 1213, 1217, 1219, 1223, 1229, 1231, 1235, 1237, 1241, 1243, 1245, 1247, 1249, 1253, 1257, 1259, 1261, 1267, 1271, 1273, 1277, 1279, 1283, 1285, 1289, 1291, 1293, 1295, 1297, 1301, 1303, 1307, 1309, 1313, 1315, 1319, 1321, 1327, 1329, 1333, 1335, 1337, 1339, 1343, 1345, 1347, 1349, 1351, 1353, 1357, 1361, 1363, 1367, 1373, 1381, 1383, 1385, 1387, 1391, 1393, 1397, 1399, 1401, 1403, 1409, 1411, 1415, 1417, 1423, 1427, 1429, 1433, 1437, 1439, 1441, 1447, 1451, 1453, 1457, 1459, 1463, 1465, 1469, 1471, 1473, 1479, 1481, 1483, 1487, 1489, 1493, 1495, 1499, 1501, 1507, 1509, 1511, 1513, 1517, 1523, 1527, 1529, 1531, 1535, 1537, 1541, 1543, 1547, 1549, 1551, 1553, 1559, 1561, 1563, 1565, 1567, 1571, 1577, 1579, 1583, 1585, 1589, 1591, 1597, 1601, 1603, 1605, 1607, 1609, 1613, 1615, 1619, 1621, 1627, 1631, 1633, 1637, 1639, 1643, 1645, 1649, 1651, 1657, 1661, 1663, 1667, 1669, 1671, 1679, 1685, 1687, 1689, 1691, 1693, 1695, 1697, 1699, 1707, 1709, 1717, 1721, 1723, 1727, 1729, 1733, 1735, 1739, 1741, 1745, 1747, 1749, 1753, 1757, 1759, 1761, 1763, 1765, 1769, 1777, 1779, 1781, 1783, 1787, 1789, 1793, 1795, 1797, 1799, 1801, 1807, 1811, 1817, 1819, 1823, 1829, 1831, 1835, 1837, 1841, 1843, 1847, 1851, 1853, 1855, 1861, 1865, 1867, 1871, 1873.

Distribution of the remainders when the numbers in this family are divided by n=2, 3,..., 11. (I took into account 2892408 values, from 1 to 9999997).

n\r 0  1 
212892407 2 
326004913161501316209 3 
40144611711446290 4 
5312765644807645017644829644990 5 
601316150126004901316208 6 
7255791439409439500439418439417439493439380 7 
80723169172308407229480723206 8 
90438729438786114672438756438793145377438665438630 9 
1006448071644829031276506450160644990 10 
11184214270739270793270918270674270849270771270926270902270793270829

A pictorial representation of the table above
motab
Imagine to divide the members of this family by a number n and compute the remainders. Should they be uniformly distributed, each remainder from 0 to n-1 would be obtained in about (1/n)-th of the cases. This outcome is represented by a white square. Reddish (resp. bluish) squares represent remainders which appear more (resp. less) frequently than 1/n.