Search a number
trimorphic numbers
A number  $n$  is called trimorphic if  $n^3$  ends with  $n$.

For example,  $99$  is trimorphic since  $99^3 = 9702\underline{99}$.

The first trimorphic numbers are 1, 4, 5, 6, 9, 24, 25, 49, 51, 75, 76, 99, 125, 249, 251, 375, 376, 499, 501, 624, 625, 749, 751, 875, 999 more terms

Trimorphic numbers can also be... (you may click on names or numbers and on + to get more values)

a-pointer 574218751 ABA 24 375 aban 24 25 49 51 + 500000000001 abundant 24 624 90624 890624 + 12890624 Achilles 2109375 admirable 24 alternating 25 49 76 125 + 749 amenable 24 25 49 76 + 925781249 apocalyptic 251 499 624 749 + 18751 arithmetic 49 51 99 125 + 9999999 automorphic 25 76 376 625 + 740081787109376 betrothed 75 brilliant 25 49 c.octagonal 25 49 625 5625 + 8212890625 c.pentagonal 51 76 c.square 25 Canada 125 Chen 251 499 751 4999 281249 compositorial 24 congruent 24 125 375 376 + 9999999 constructible 24 51 cube 125 Cullen 25 Cunningham 24 99 624 999 + 99999999999999 Curzon 125 249 749 5625 + 25781249 cyclic 51 249 251 499 + 4999999 D-number 51 249 501 5001 + 500001 d-powerful 24 375 376 6249 59375 de Polignac 251 499999 7890625 87109375 decagonal 3751 deficient 25 49 51 75 + 9999999 dig.balanced 49 75 99 624 + 50000001 Duffinian 25 49 75 125 + 7890625 economical 25 49 125 249 + 12890625 emirp 751 1249 emirpimes 49 51 18751 equidigital 25 49 249 251 + 12890624 eRAP 24 esthetic 76 evil 24 51 75 99 + 925781249 factorial 24 fibodiv 75 Friedman 25 125 625 59375 + 781249 frugal 125 625 4375 9375 + 787109375 gapful 3751 9999 109376 609375 + 36425781249 Gilda 49 good prime 251 happy 49 376 8751 109376 Harshad 24 375 624 999 + 999999999 highly composite 24 iban 24 idoneal 24 25 inconsummate 75 9375 59375 68751 281249 interprime 76 99 376 501 + 7109376 Jordan-Polya 24 junction 5625 90625 890625 2890625 Kaprekar 99 999 9999 99999 + 999999999999999 katadrome 51 75 76 751 + 8751 Lehmer 51 Lucas 76 lucky 25 49 51 75 + 9218751 Lynch-Bell 24 624 magnanimous 25 49 76 376 625 metadrome 24 25 49 125 + 1249 modest 49 499 999 4999 + 999999999 Moran 999 Motzkin 51 nialpdrome 51 75 76 99 + 999999999999999 nonagonal 24 75 nude 24 99 624 999 + 99999999 oban 25 75 76 99 + 999 odious 25 49 76 251 + 999999999 palindromic 99 999 9999 99999 + 999999999999999 panconsummate 24 pandigital 75 99 pentagonal 51 376 pernicious 24 25 49 76 + 7890625 Perrin 51 plaindrome 24 25 49 99 + 999999999999999 power 25 49 125 625 + 8212890625 powerful 25 49 125 625 + 8212890625 practical 24 624 90624 890624 2890624 prim.abundant 999999 prime 251 499 751 1249 + 574218751 Proth 25 49 90625 pseudoperfect 24 624 90624 890624 999999 repdigit 99 999 9999 99999 + 999999999999999 repfigit 75 Ruth-Aaron 24 25 49 125 self 75 501 749 4999 + 425781249 semiprime 25 49 51 249 + 500001 sliding 25 Smith 7890625 sphenic 50001 781249 5000001 9218751 + 75781249 square 25 49 625 5625 + 8212890625 straight-line 999 9999 99999 999999 + 999999999999999 strong prime 251 499 751 1249 + 4999999 super Niven 24 super-d 749 781249 890624 superabundant 24 tau 24 376 625 5625 2890624 tribonacci 24 twin 31249 281249 uban 25 49 51 75 + 50000000000001 Ulam 99 624 751 8751 + 9999999 unprimeable 624 625 90624 90625 + 7890625 untouchable 624 9376 890624 wasteful 24 51 75 76 + 9999999 weak prime 31249 49999 74218751 Woodall 99999999999 Zuckerman 24 624 Zumkeller 24 624 90624 zygodrome 99 999 9999 99999 + 999999999999999