A member of a pair of consecutive primes which have the same digits, order apart. more
The first 600 Ormiston numbers :
1913,
1931,
18379,
18397,
19013,
19031,
25013,
25031,
34613,
34631,
35617,
35671,
35879,
35897,
36979,
36997,
37379,
37397,
37813,
37831,
40013,
40031,
40213,
40231,
40639,
40693,
45613,
45631,
48091,
48109,
49279,
49297,
51613,
51631,
55313,
55331,
56179,
56197,
56713,
56731,
58613,
58631,
63079,
63097,
63179,
63197,
64091,
64109,
65479,
65497,
66413,
66431,
74779,
74797,
75913,
75931,
76213,
76231,
76579,
76597,
76679,
76697,
85313,
85331,
88379,
88397,
90379,
90397,
90679,
90697,
93113,
93131,
94379,
94397,
96079,
96097,
97213,
97231,
98737,
98773,
109279,
109297,
112979,
112997,
114013,
114031,
115613,
115631,
116113,
116131,
116293,
116329,
122579,
122597,
123379,
123397,
124213,
124231,
126079,
126097,
126613,
126631,
127979,
127997,
128413,
128431,
131413,
131431,
131713,
131731,
133813,
133831,
135479,
135497,
139091,
139109,
139813,
139831,
140779,
140797,
144013,
144031,
145091,
145109,
145879,
145897,
147179,
147197,
151579,
151597,
152879,
152897,
159079,
159097,
162091,
162109,
163679,
163697,
164513,
164531,
171679,
171697,
174413,
174431,
178513,
178531,
182279,
182297,
184013,
184031,
187237,
187273,
187513,
187531,
190979,
190997,
193013,
193031,
194179,
194197,
194413,
194431,
201979,
201997,
211979,
211997,
215279,
215297,
216379,
216397,
222713,
222731,
224813,
224831,
227113,
227131,
228713,
228731,
231613,
231631,
235979,
235997,
239713,
239731,
240113,
240131,
240437,
240473,
244091,
244109,
246713,
246731,
249779,
249797,
250091,
250109,
254179,
254197,
256813,
256831,
260213,
260231,
269579,
269597,
271079,
271097,
271879,
271897,
273979,
273997,
276781,
276817,
277279,
277297,
277513,
277531,
277579,
277597,
280013,
280031,
280979,
280997,
286813,
286831,
287579,
287597,
290879,
290897,
293413,
293431,
301813,
301831,
304813,
304831,
309713,
309731,
310379,
310397,
312313,
312331,
321091,
321109,
326479,
326497,
327779,
327797,
336613,
336631,
338213,
338231,
343337,
343373,
345413,
345431,
345979,
345997,
349313,
349331,
351079,
351097,
351479,
351497,
351779,
351797,
355679,
355697,
357179,
357197,
357437,
357473,
359783,
359837,
363379,
363397,
365213,
365231,
366479,
366497,
369079,
369097,
371779,
371797,
379513,
379531,
379579,
379597,
386279,
386297,
392113,
392131,
393779,
393797,
394879,
394897,
399079,
399097,
400579,
400597,
402613,
402631,
403079,
403097,
408979,
408997,
411013,
411031,
414413,
414431,
415013,
415031,
415213,
415231,
416513,
416531,
421313,
421331,
424313,
424331,
432613,
432631,
439613,
439631,
447137,
447173,
451313,
451331,
451879,
451897,
454313,
454331,
454637,
454673,
455579,
455597,
456293,
456329,
462079,
462097,
462113,
462131,
464879,
464897,
465337,
465373,
469379,
469397,
470279,
470297,
473479,
473497,
473579,
473597,
478679,
478697,
478879,
478897,
480713,
480731,
481513,
481531,
485479,
485497,
487979,
487997,
489613,
489631,
491279,
491297,
497813,
497831,
500179,
500197,
502339,
502393,
502613,
502631,
505213,
505231,
508037,
508073,
512779,
512797,
518813,
518831,
522479,
522497,
526913,
526931,
530713,
530731,
535679,
535697,
536513,
536531,
541613,
541631,
542837,
542873,
543113,
543131,
545213,
545231,
546179,
546197,
550813,
550831,
551179,
551197,
552379,
552397,
552917,
552971,
558091,
558109,
558179,
558197,
558913,
558931,
558979,
558997,
559813,
559831,
562813,
562831,
565937,
565973,
565979,
565997,
567013,
567031,
569479,
569497,
570113,
570131,
573179,
573197,
577879,
577897,
579179,
579197,
580417,
580471,
584879,
584897,
586237,
586273,
594379,
594397,
594679,
594697,
599213,
599231,
601379,
601397,
602179,
602197,
602279,
602297,
604013,
604031,
604379,
604397,
611113,
611131,
619313,
619331,
621679,
621697,
622313,
622331,
623071,
623107,
625213,
625231,
625979,
625997,
634013,
634031,
637079,
637097,
646379,
646397,
648079,
648097,
649879,
649897,
654679,
654697,
657413,
657431,
661679,
661697,
666091,
666109,
668417,
668471,
670279,
670297,
672079,
672097,
675113,
675131,
679279,
679297,
681913,
681931,
682679,
682697,
684091,
684109,
685679,
685697,
687413,
687431,
688679,
688697,
689113,
689131,
702413,
702431,
705079,
705097,
705613,
705631,
708091,
708109,
711479,
711497,
716713,
716731,
719839,
719893,
720913,
720931,
724313,
724331,
728813,
728831,
732079,
732097,
732713,
732731,
734113,
734131,
734479,
734497,
741413,
741431,
743279,
743297,
747713,
747731,
749279,
749297,
752413,
752431,
754513,
754531,
759113,
759131,
761713,
761731,
761879,
761897,
765913,
765931,
771091,
771109,
772279,
772297,
773879,
773897,
777013,
777031,
778579,
778597,
780613,
780631,
786179,
786197,
788213,
788231,
788479,
788497,
790379,
790397,
792713,
792731,
793279,
793297,
800879,
800897,
802037,
802073,
807017,
807071,
809213,
809231,
809779,
809797.
Distribution of the remainders when the numbers in this family are divided by n=2, 3,..., 11. (I took into account 1276660 values, from 1913 to 1999996897).
n\r | 0 | 1 |
2 | 0 | 1276660 | 2 |
3 | 0 | 639402 | 637258 | 3 |
4 | 0 | 709934 | 0 | 566726 | 4 |
5 | 0 | 299207 | 346851 | 340015 | 290587 | 5 |
6 | 0 | 639402 | 0 | 0 | 0 | 637258 | 6 |
7 | 0 | 233953 | 242531 | 161518 | 161737 | 243035 | 233886 | 7 |
8 | 0 | 344806 | 0 | 290208 | 0 | 365128 | 0 | 276518 | 8 |
9 | 0 | 212752 | 213111 | 0 | 212844 | 212260 | 0 | 213806 | 211887 | 9 |
10 | 0 | 299207 | 0 | 340015 | 0 | 0 | 0 | 346851 | 0 | 290587 | 10 |
11 | 0 | 138547 | 135590 | 134801 | 91526 | 138090 | 137676 | 91670 | 134402 | 135200 | 139158 |
A pictorial representation of the table above
Imagine to divide the members of this family by a number n and compute the remainders. Should they be uniformly distributed, each remainder from 0 to n-1 would be obtained in about (1/n)-th of the cases. This outcome is represented by a white square. Reddish (resp. bluish) squares represent remainders which appear more (resp. less) frequently than 1/n.