Search a number
a-pointer primes
A prime number  $p$  is called a-pointer if the next prime number can be obtained adding  $p$  to its sum of digits (here the 'a' stands for additive).

For example, 293 is an a-pointer prime since the next prime is equal to 293 + 2 + 9 + 3 = 307.

The first a-pointer primes are 11, 13, 101, 103, 181, 293, 631, 701, 811, 1153, 1171, 1409, 1801, 1933, 2017, 2039, 2053, 2143, 2213, 2521, 2633, 3041, 3089, 3221, 3373, 3391, 3469, 3643, 3739, 4057, 4231, 5153, 5281, 5333, 5449, 5623, 5717, 6053, 6121, 6301, 7043, 7333, 8101 more terms

A-pointer primes can also be... (you may click on names or numbers and on + to get more values)

aban 11 13 101 103 + 9999000709 alt.fact. 101 alternating 101 103 181 701 + 89892169 amenable 13 101 181 293 + 999968341 apocalyptic 1933 2039 2053 2143 + 29641 arithmetic 11 13 101 103 + 9999347 bemirp 198901 18991981 110098601 1016910161 + 1601169611 c.decagonal 11 101 5281 6301 + 9988438601 c.heptagonal 1933 41203 114031 216133 + 8922870503 c.pentagonal 181 19141 126001 3525391 + 8604688891 c.square 13 181 2521 76441 + 9699319921 c.triangular 631 108139 145549 443089 + 9890281801 canyon 101 103 701 2017 + 9875405789 Chen 11 13 101 181 + 99986539 congruent 13 101 103 181 + 9998333 Cunningham 101 8101 22501 32401 + 9926136901 Curzon 293 1409 5333 6053 + 199816073 cyclic 11 13 101 103 + 9999347 de Polignac 701 2213 3643 3739 + 99951043 deficient 11 13 101 103 + 9999347 dig.balanced 11 3221 8543 11161 + 199971077 economical 11 13 101 103 + 19993951 emirp 13 701 1153 1409 + 199971329 equidigital 11 13 101 103 + 19993951 esthetic 101 21212101 23210101 Eulerian 11 evil 101 293 811 1409 + 999996407 fibodiv 3089 Fibonacci 13 Friedman 83357 216023 551423 585341 + 937537 good prime 11 101 2521 5623 + 198463511 happy 13 103 293 1933 + 9951101 hex 631 1801 9241 50311 + 9930310867 Hogben 13 24181 121453 200257 + 9487636621 Honaker 1933 6301 41131 75941 + 998963701 iban 11 101 103 701 + 777317 iccanobiF 13 idoneal 13 inconsummate 3041 3221 5153 6053 + 995801 Jacobsthal 11 junction 101 103 1409 2017 + 99951043 katadrome 631 8543 Lucas 11 lucky 13 631 1801 1933 + 9923227 m-pointer 15121 magnanimous 11 101 metadrome 13 3469 123457 modest 13 103 811 1933 + 1989233333 mountain 181 293 2521 3643 + 3578986321 nialpdrome 11 631 811 3221 + 9999875321 nude 11 oban 11 13 811 odious 11 13 103 181 + 999980231 Ormiston 114031 163697 227131 286831 + 1999206271 palindromic 11 101 181 30203 + 967828769 palprime 11 101 181 30203 + 967828769 pancake 11 631 2017 157081 + 9584408927 panconsummate 11 pandigital 11 partition 11 101 pernicious 11 13 103 181 + 9999347 Pierpont 13 1153 plaindrome 11 13 3469 56999 + 5666677889 prime 11 13 101 103 + 9999993463 primeval 13 Proth 13 1153 1409 36353 + 9767878657 repdigit 11 repunit 13 24181 121453 200257 + 9487636621 self 2213 3089 4057 10313 + 999996407 self-describing 32162321 1210444141 1733221531 3114182233 + 4144171541 sliding 11 101 Sophie Germain 11 293 1409 2039 + 9999555551 star 13 181 2053 2521 + 9457731037 strobogrammatic 11 101 181 161111191 strong prime 11 101 631 701 + 99980597 super-d 181 631 3373 3391 + 9978131 tribonacci 13 trimorphic 574218751 truncatable prime 13 293 3373 3643 + 9459642683 twin 11 13 101 103 + 999905971 uban 11 13 2000093 3000047 + 9099000089 Ulam 11 13 2633 3041 + 9902293 undulating 101 181 upside-down 11946199 12991189 19537519 32855287 + 9971739311 weak prime 13 103 181 293 + 99998611 weakly prime 33051769 48441331 74543663 81434501 + 9960215141 Zuckerman 11 zygodrome 11 4443311 33322111 55555111 + 9922288811