Search a number
balanced primes
A prime is said to be balanced if it is the average of the two surrounding primes, i.e., it is at equal distance from previous prime and next prime.

For example, 53 is a balanced prime since it is the average of the two primes 47 and 59.

The smallest 3 × 3 magic square made of balanced primes is

66024233189353916675727
28463867183905638317259
20105399488758730178703

The first balanced primes are 5, 53, 157, 173, 211, 257, 263, 373, 563, 593, 607, 653, 733, 947, 977, 1103, 1123, 1187, 1223, 1367, 1511 more terms

Balanced primes can also be... (you may click on names or numbers and on + to get more values)

aban 53 157 173 + 9999000083 9999000689 alternating 563 947 2903 + 989892307 989892367 amenable 53 157 173 + 999996329 999998789 apocalyptic 157 977 1103 + 29599 29873 arithmetic 53 157 173 + 9999883 9999937 bemirp 18616681 168910801 199109681 + 1690896061 1969081091 c.decagonal 211 20161 135301 + 9692103781 9897022951 c.heptagonal 176401 890821 1545461 + 9039531271 9583951693 c.pentagonal 11731 17431 17851 + 9373547641 9482550391 c.square 15313 20201 156241 + 9620093341 9992597081 c.triangular 412651 1282051 4670191 + 9280975411 9787991431 canyon 607 947 4013 + 9876543179 9876543217 Chen 53 157 211 + 99995711 99999617 congruent 53 157 173 + 9997189 9997327 constructible 257 Cunningham 257 13457 30977 + 9685709057 9748402757 Curzon 53 173 593 + 199992053 199999661 cyclic 53 157 173 + 9999883 9999937 d-powerful 373 17483 22447 + 9844693 9923477 de Polignac 373 977 3637 + 99988331 99999617 deficient 53 157 173 + 9999883 9999937 dig.balanced 563 653 2417 + 199967011 199987841 economical 53 157 173 + 19999519 19999981 emirp 157 733 1103 + 199997003 199999661 equidigital 53 157 173 + 19999519 19999981 esthetic 34543 432343 3212323 + 4343234543 6789898987 evil 53 257 263 + 999998339 999998789 fibodiv 123047543 Friedman 19739 74897 128153 + 823547 885727 good prime 53 257 563 + 199216613 199880953 happy 263 563 653 + 9994373 9996823 hex 22447 35317 45757 + 9854511847 9974545747 Hogben 157 211 1123 + 9824675281 9945973171 Honaker 263 7523 11731 + 999313141 999821261 iban 173 211 373 + 774223 777103 inconsummate 173 563 3307 + 987491 993869 junction 6317 6323 7823 + 99985147 99986251 katadrome 53 653 9871 96431 Leyland 593 32993 lonely 53 211 lucky 211 1123 3307 + 9978607 9983977 m-pointer 1123 21911 3116111 + 316111111 1111131821 magnanimous 607 42209 metadrome 157 257 1367 13457 12356789 modest 211 733 23333 + 1988099999 1999002079 mountain 173 263 373 + 4689875321 5678987543 nialpdrome 53 211 653 + 9999985211 9999997543 oban 53 373 563 + 733 977 odious 157 173 211 + 999996131 999996329 Ormiston 34631 66431 76579 + 1999838531 1999965379 palindromic 373 11411 30103 + 994848499 996989699 palprime 373 11411 30103 + 994848499 996989699 pancake 211 947 4657 + 9925911857 9999313237 panconsummate 53 211 257 pernicious 157 173 211 + 9994373 9997219 Pierpont 257 18433 plaindrome 157 257 1123 + 5556666677 6888899999 prime 53 157 173 + 9999995059 9999997543 primeval 1367 Proth 257 4993 9473 + 9893707777 9963962369 repunit 157 211 1123 + 9824675281 9945973171 self 53 211 1223 + 999974447 999979397 self-describing 17331031 21322319 32272733 + 4441151641 4442274227 Sophie Germain 53 173 593 + 9999922643 9999994883 star 3313 12973 15913 + 9854383213 9942603337 strobogrammatic 688889 1068901 1681891 + 1901881061 1906699061 super-d 1123 4013 4597 + 9992921 9997219 truncatable prime 53 173 373 + 9127692647 9391564373 uban 53 1000099 6000047 + 9092000083 9099000013 Ulam 53 607 1103 + 9989417 9992681 undulating 373 upside-down 7823 92581 3355577 + 9861199421 9882648221 weakly prime 3326489 21089489 21668839 + 9956909143 9994090871 zygodrome 3355577 5555777 7722277 + 8888000999 9993355511