Search a number
mountain numbers
A number is a mountain number in base  $b$  if its digits first increase and then decrease in that base, there is only one occurrence of the largest digit, and the first and last digits are 1.

For example, 1271, 123541, and 136797631 are all mountain numbers in base 10.

Here, I consider generalized mountain numbers in base 10, where the first and last digits may differ, as in 150, 27941, and 45678931. For brevity, I simply refer to them as mountain numbers. Note that, contrary to the OEIS entries linked below, I exclude single digit numbers.

In base  $b\ge2$  there are

\[(8 - 9 2^b +)
   \frac{4^b - 9\cdot 2^b + 8}{6}+b
\]
mountain numbers. For base  $b=10$  the formula above gives a total of 173238 mountain numbers, from 120 to 123456789876543210. Among these, there are 7141 primes (from 131 to 134567897654321).

The first mountain numbers (in base 10) are 120, 121, 130, 131, 132, 140, 141, 142, 143, 150, 151, 152, 153, 154, 160, 161, 162, 163, 164, 165, 170, 171, 172, 173, 174, 175, 176, 180, 181, 182, 183 more terms

Mountain numbers can also be... (you may click on names or numbers and on + to get more values)

a-pointer 181 293 2521 + 3578986321 ABA 160 162 192 + 13478432 aban 120 121 130 + 898 abundant 120 132 140 + 49876542 Achilles 392 675 1352 + 13478432 admirable 120 140 174 + 78976542 alternating 121 141 143 + 898765432 amenable 120 121 132 + 898765432 amicable 284 1210 2620 + 168730 anti-perfect 285 apocalyptic 192 243 251 + 29876 arithmetic 131 132 140 + 8987654 astonishing 1353 1863 3591 23490 automorphic 376 balanced p. 173 263 373 + 5678987543 betrothed 140 195 1575 binomial 120 153 165 + 1456893210 brilliant 121 143 187 + 678974321 c.decagonal 151 281 361 + 347986531 c.heptagonal 197 253 386 + 1278971 c.nonagonal 190 253 496 + 1269853210 c.octagonal 121 361 1521 + 123456787654321 c.pentagonal 141 181 276 + 34679751 c.square 181 265 365 + 578986421 c.triangular 274 361 460 + 134567896321 cake 130 176 232 + 135797530 Canada 581 Carmichael 561 2465 2821 15841 Catalan 132 1430 4862 16796 Chen 131 181 191 + 79876541 compositorial 192 congruent 120 141 142 + 8987654 constructible 120 160 170 + 7864320 cube 343 5832 68921 1367631 Cullen 161 385 897 Cunningham 120 143 170 + 123456787654320 Curzon 141 153 165 + 198765410 cyclic 131 141 143 + 8987653 D-number 141 183 195 + 6987621 d-powerful 132 153 175 + 8987643 de Polignac 251 373 1243 + 89875421 decagonal 175 232 297 + 234679420 deceptive 451 481 2821 + 2346765421 deficient 121 130 131 + 8987654 dig.balanced 120 141 142 + 198765320 double fact. 384 3840 droll 240 672 Duffinian 121 143 161 + 8987651 economical 121 131 141 + 19876541 emirp 1231 1283 1321 + 178985321 emirpimes 143 183 185 + 89876543 enlightened 250 2560 equidigital 121 131 141 + 19876541 eRAP 170 1274 69874 + 1279530 esthetic 121 232 343 + 456789876543210 Eulerian 120 47840 evil 120 130 132 + 898765430 factorial 120 fibodiv 183 298 497 + 124896 Fibonacci 1597 2584 6765 Friedman 121 153 343 + 789750 frugal 243 343 1250 + 457898751 gapful 120 121 130 + 78987643210 Gilda 152 364 683 37862 good prime 191 251 563 + 145975421 happy 130 176 190 + 8987651 harmonic 140 270 496 + 237510 Harshad 120 132 140 + 8986543210 heptagonal 286 342 697 + 2347897321 hex 271 397 1261 + 34976431 hexagonal 120 153 190 + 1456893210 highly composite 120 180 240 + 2520 hoax 160 250 265 + 89876432 Hogben 183 241 273 + 357985321 Honaker 131 263 1361 + 567896321 house 271 1285 3563 + 1368651 hyperperfect 496 697 19521 159841 iban 120 121 140 + 474321 idoneal 120 130 165 + 1365 inconsummate 161 173 195 + 898764 interprime 120 150 154 + 89876430 Jacobsthal 171 341 683 + 2731 Jordan-Polya 120 192 240 + 7864320 junction 1310 1320 1421 + 89876543 Kaprekar 297 4950 38962 Kynea 287 Lehmer 451 481 561 + 13467987541 Leyland 593 2530 69632 1596520 lonely 120 1340 1341 + 1343 Lucas 1364 3571 lucky 141 151 163 + 8986531 Lynch-Bell 132 162 175 + 1679832 m-pointer 1231 1321 magic 175 260 671 + 48986321 magnanimous 130 152 170 + 37930 modest 1254 1421 1463 + 1456785321 Moran 152 153 171 + 78543210 Motzkin 5798 narcissistic 153 370 371 nonagonal 154 261 396 + 124895431 nude 132 162 175 + 346986432 O'Halloran 140 260 380 oban 350 353 360 + 898 octagonal 176 280 341 + 467975320 odious 121 131 140 + 898765432 Ormiston 1931 34631 35671 + 1898765431 palindromic 121 131 141 + 234567898765432 palprime 131 151 181 + 123467898764321 pancake 121 154 172 + 1245678742 panconsummate 121 231 271 + 1291 pandigital 120 141 180 + 8976543210 partition 176 231 297 + 124754 pentagonal 176 287 376 + 67875430 perfect 496 pernicious 121 130 131 + 8987654 Perrin 486 1497 1983 + 134643 persistent 1234567890 1235679840 1245678930 + 89876543210 Pierpont 163 193 487 + 2593 Poulet 341 561 1387 + 27986421 power 121 196 243 + 1234567654321 powerful 121 196 243 + 123456787654321 practical 120 132 140 + 8987520 prim.abundant 174 186 196 + 89653210 prime 131 151 163 + 568987654321 primorial 2310 productive 352 562 586 + 3592 pronic 132 182 240 + 123456798765432 Proth 161 193 241 + 13598721 pseudoperfect 120 132 140 + 898764 repfigit 197 2580 3684 + 298320 repunit 121 183 241 + 357985321 Rhonda 4752 5832 12985 + 6754321 Ruth-Aaron 153 154 370 + 13896532 Saint-Exupery 480 780 1620 + 234796320 Sastry 183 self 121 132 143 + 898765432 semiprime 121 141 142 + 89876543 sliding 250 254 290 + 156890 Smith 121 265 274 + 89876540 Sophie Germain 131 173 191 + 5698765421 sphenic 130 154 165 + 89876541 square 121 196 361 + 123456787654321 star 121 181 253 + 26789875321 strobogrammatic 181 1691 1961 + 19861 strong prime 163 191 197 + 89854321 subfactorial 265 1854 super Niven 120 140 150 + 3960 super-d 131 181 190 + 8987631 superabundant 120 180 240 + 2520 tau 132 152 180 + 898754320 taxicab 13832 13489875 25785432 tetrahedral 120 165 286 + 12347930 tetranacci 1490 2872 triangular 120 153 171 + 1456893210 tribonacci 274 35890 trimorphic 251 375 376 + 68751 truncatable prime 173 197 283 + 2345953 twin 151 181 191 + 789865421 Ulam 131 175 180 + 8987620 undulating 121 131 141 + 898 unprimeable 890 892 894 + 8987642 untouchable 120 162 262 + 898752 vampire 1260 1395 1530 + 2369854210 wasteful 120 130 132 + 8987654 weak prime 131 151 181 + 89876431 weird 5830 12530 12670 + 897610 Wieferich 45643 Woodall 191 383 895 24575 Zuckerman 132 175 384 + 126432 Zumkeller 120 132 140 + 89870