Search a number
weakly primes
A prime is said to be weakly if it cannot be changed into another prime by changing a single digit.

For example, 13 is not a weakly prime since changing its last digit into 7 we obtain another prime, 17. The smallest weakly prime is 294001, indeed changing any of its digits results in a composite number.

A composite number which cannot be turned into a prime by changing a single digit is called unprimeable.

Terence Tao has proved that there are infinite weakly primes.

The first weakly primes are 294001, 505447, 584141, 604171, 971767, 1062599, 1282529, 1524181, 2017963, 2474431, 2690201 more terms

A few extremely weakly primes are known, i.e., prime that become composite if any digit is removed, changed, or inserted. They are 40144044691, 58058453543, 89797181359, 185113489357, 213022025663, and 222498988079.

Weakly primes can also be... (you may click on names or numbers and on + to get more values)

a-pointer 33051769 48441331 74543663 81434501 + 9843539203 9845774051 9915415343 9960215141 aban 186000169 696000421 762000461 959000711 + 98369000071 98592000151 99059000801 99884000693 alternating 81434501 85478369 123892907 167056709 + 901052927 925254929 969094909 983810701 amenable 294001 584141 1282529 1524181 + 995667997 997367737 997686013 998740213 arithmetic 294001 505447 584141 604171 + 9016079 9537371 9608189 9931447 balanced p. 3326489 21089489 21668839 27245539 + 9947576851 9951461671 9956909143 9994090871 c.decagonal 3383250781 88540120561 94269493951 c.heptagonal 9545528833 c.square 18539484241 c.triangular 5830255021 32411956519 canyon 86310135679 86432126789 Chen 584141 971767 1062599 4393139 + 98750609 98954621 99041179 99778351 congruent 505447 584141 971767 1062599 + 7982543 9016079 9608189 9931447 Curzon 3326489 7469789 14075273 23462969 + 146610701 156251789 157553993 162123869 cyclic 294001 505447 584141 604171 + 9016079 9537371 9608189 9931447 d-powerful 3326489 de Polignac 584141 604171 4393139 9016079 + 97283321 97518247 98701003 98750609 deficient 294001 505447 584141 604171 + 9016079 9537371 9608189 9931447 dig.balanced 8353427 9537371 14075273 34302127 + 189895879 194437163 195315619 196363373 economical 294001 505447 584141 604171 + 17424721 18561293 18953677 19851991 emirp 1282529 3326489 10564877 14151757 + 193837841 198129871 198303601 198873523 equidigital 294001 505447 584141 604171 + 17424721 18561293 18953677 19851991 evil 294001 604171 1062599 1282529 + 995449033 997274287 997367737 998839951 good prime 5564453 59160317 61589579 126517543 happy 604171 3326489 5152507 7469789 7858771 8090057 8353427 8532761 hex 4103337817 Hogben 23402421463 Honaker 6173731 20212327 22138349 34302127 + 921325609 941179201 944375701 945808223 inconsummate 584141 junction 2474431 7982543 8353427 11593019 + 88551439 89006641 92519951 99778351 lucky 604171 2474431 6463267 odious 505447 584141 971767 1524181 + 997638007 997686013 997898039 998740213 Ormiston 2474431 29348797 35009671 67296517 + 1963076431 1985370731 1985538197 1993416713 palindromic 79856965897 91507670519 palprime 79856965897 91507670519 pancake 26783972629 56408862787 pernicious 505447 584141 1524181 2017963 + 6236179 6712591 8639089 9016079 persistent 12695840537 13508267249 21635702849 29473078651 + 85481267309 89567803421 90684725371 95440286317 prime 294001 505447 584141 604171 + 99999342181 99999420589 99999423397 99999446179 Proth 43447484417 62688854017 repunit 23402421463 self 6173731 7469797 10564877 17424721 + 991161361 995270849 998740213 998839951 Sophie Germain 3326489 5575259 7469789 9537371 + 9991684673 9996508433 9997470629 9999130709 strong prime 505447 584141 604171 1062599 + 98954621 99041179 99157987 99595919 super-d 971767 1062599 1524181 2474431 3326489 6173731 9537371 twin 294001 1062599 1524181 5575259 + 991161361 992497411 994125569 998839951 uban 13075000087 72047000057 95053000019 96053000053 weak prime 294001 971767 1282529 1524181 + 98285017 98451193 98643439 98750609 zygodrome 77755114477