A number that sets a record for the number of distinct primes that can be written using its digits. more
The primeval numbers up to 1.01×10
11 :
1,
2,
13,
37,
107,
113,
137,
1013,
1037,
1079,
1237,
1367,
1379,
10079,
10123,
10136,
10139,
10237,
10279,
10367,
10379,
12379,
13679,
100279,
100379,
101237,
102347,
102379,
103679,
123479,
1001237,
1002347,
1002379,
1003679,
1012349,
1012379,
1023457,
1023467,
1023479,
1234579,
1234679,
10012349,
10012379,
10023457,
10023467,
10023479,
10034579,
10123457,
10123469,
10123579,
10123679,
10234567,
10234579,
10234679,
12345679,
100123379,
100123457,
100123469,
100123579,
100123679,
100233479,
100234567,
100234579,
100234679,
101234567,
101234579,
102334679,
102345679,
1000234579,
1000234679,
1001233469,
1001233579,
1001233679,
1001234567,
1001234579,
1002334679,
1002345679,
1012345678,
1012345679,
1123456789,
10001234579,
10002334679,
10002345679,
10012234579,
10012234679,
10012334579,
10012345678,
10012345679,
10122345679,
10123345679,
10123456789,
100012345678,
100012345679,
100112345678,
100112345789,
100122345679,
100123345679,
100123456789,
101233456789,
101234567789.
Distribution of the remainders when the numbers in this family are divided by n=2, 3,..., 11. (I took into account 100 values, from 1 to 101234567789).
n\r | 0 | 1 |
2 | 6 | 94 | 2 |
3 | 0 | 36 | 64 | 3 |
4 | 1 | 26 | 5 | 68 | 4 |
5 | 0 | 2 | 23 | 8 | 67 | 5 |
6 | 0 | 33 | 3 | 0 | 3 | 61 | 6 |
7 | 14 | 13 | 13 | 15 | 12 | 14 | 19 | 7 |
8 | 1 | 7 | 1 | 29 | 0 | 19 | 4 | 39 | 8 |
9 | 0 | 18 | 20 | 0 | 16 | 22 | 0 | 2 | 22 | 9 |
10 | 0 | 1 | 1 | 4 | 0 | 0 | 1 | 22 | 4 | 67 | 10 |
11 | 0 | 3 | 4 | 17 | 23 | 24 | 18 | 8 | 3 | 0 | 0 |
A pictorial representation of the table above
Imagine to divide the members of this family by a number n and compute the remainders. Should they be uniformly distributed, each remainder from 0 to n-1 would be obtained in about (1/n)-th of the cases. This outcome is represented by a white square. Reddish (resp. bluish) squares represent remainders which appear more (resp. less) frequently than 1/n.