Numbers defined by the recurrence P(0)=3, P(1)=0, P(2)=2 and P(n) = P(n-2) + P(n-3). more
The Perrin numbers up to 10
15 :
2,
3,
5,
7,
10,
12,
17,
22,
29,
39,
51,
68,
90,
119,
158,
209,
277,
367,
486,
644,
853,
1130,
1497,
1983,
2627,
3480,
4610,
6107,
8090,
10717,
14197,
18807,
24914,
33004,
43721,
57918,
76725,
101639,
134643,
178364,
236282,
313007,
414646,
549289,
727653,
963935,
1276942,
1691588,
2240877,
2968530,
3932465,
5209407,
6900995,
9141872,
12110402,
16042867,
21252274,
28153269,
37295141,
49405543,
65448410,
86700684,
114853953,
152149094,
201554637,
267003047,
353703731,
468557684,
620706778,
822261415,
1089264462,
1442968193,
1911525877,
2532232655,
3354494070,
4443758532,
5886726725,
7798252602,
10330485257,
13684979327,
18128737859,
24015464584,
31813717186,
42144202443,
55829181770,
73957919629,
97973384213,
129787101399,
171931303842,
227760485612,
301718405241,
399691789454,
529478890853,
701410194695,
929170680307,
1230889085548,
1630580875002,
2160059765855,
2861469960550,
3790640640857,
5021529726405,
6652110601407,
8812170367262,
11673640327812,
15464280968669,
20485810695074,
27137921296481,
35950091663743,
47623731991555,
63088012960224,
83573823655298,
110711744951779,
146661836615522,
194285568607077,
257373581567301,
340947405222599,
451659150174378,
598320986789900,
792606555396977.
Distribution of the remainders when the numbers in this family are divided by n=2, 3,..., 11. (I took into account 100000 values, from 2 to 2.2⋅1012212).
n\r | 0 | 1 |
2 | 42858 | 57142 | 2 |
3 | 30770 | 23076 | 46154 | 3 |
4 | 14286 | 28572 | 28572 | 28570 | 4 |
5 | 20835 | 8333 | 33334 | 16666 | 20832 | 5 |
6 | 13188 | 13187 | 19781 | 17582 | 9889 | 26373 | 6 |
7 | 12500 | 12500 | 12501 | 16667 | 12499 | 16668 | 16665 | 7 |
8 | 3572 | 10714 | 17858 | 10714 | 10714 | 17858 | 10714 | 17856 | 8 |
9 | 7693 | 5128 | 17950 | 15385 | 5128 | 17948 | 7692 | 12820 | 10256 | 9 |
10 | 8932 | 4762 | 14284 | 9523 | 8928 | 11903 | 3571 | 19050 | 7143 | 11904 | 10 |
11 | 9167 | 14164 | 11669 | 8334 | 11666 | 9166 | 4169 | 9168 | 6666 | 6666 | 9165 |
A pictorial representation of the table above
Imagine to divide the members of this family by a number n and compute the remainders. Should they be uniformly distributed, each remainder from 0 to n-1 would be obtained in about (1/n)-th of the cases. This outcome is represented by a white square. Reddish (resp. bluish) squares represent remainders which appear more (resp. less) frequently than 1/n.