Search a number
brilliant numbers
A semiprime whose two prime factors have the same number of digits. more

The first 600 brilliant numbers :
4, 6, 9, 10, 14, 15, 21, 25, 35, 49, 121, 143, 169, 187, 209, 221, 247, 253, 289, 299, 319, 323, 341, 361, 377, 391, 403, 407, 437, 451, 473, 481, 493, 517, 527, 529, 533, 551, 559, 583, 589, 611, 629, 649, 667, 671, 689, 697, 703, 713, 731, 737, 767, 779, 781, 793, 799, 803, 817, 841, 851, 869, 871, 893, 899, 901, 913, 923, 943, 949, 961, 979, 989, 1003, 1007, 1027, 1037, 1067, 1073, 1079, 1081, 1121, 1139, 1147, 1157, 1159, 1189, 1207, 1219, 1241, 1247, 1261, 1271, 1273, 1333, 1343, 1349, 1357, 1363, 1369, 1387, 1403, 1411, 1457, 1501, 1513, 1517, 1537, 1541, 1577, 1591, 1633, 1643, 1649, 1679, 1681, 1691, 1711, 1739, 1763, 1769, 1817, 1829, 1843, 1849, 1891, 1909, 1927, 1943, 1961, 2021, 2047, 2059, 2077, 2117, 2173, 2183, 2201, 2209, 2231, 2257, 2263, 2279, 2291, 2407, 2419, 2449, 2479, 2491, 2501, 2537, 2573, 2581, 2623, 2627, 2701, 2747, 2759, 2773, 2809, 2813, 2867, 2881, 2911, 2923, 2993, 3007, 3053, 3071, 3127, 3139, 3149, 3233, 3239, 3293, 3337, 3397, 3403, 3431, 3481, 3551, 3569, 3589, 3599, 3649, 3713, 3721, 3763, 3827, 3869, 3901, 3953, 3977, 4087, 4171, 4183, 4187, 4189, 4307, 4331, 4399, 4453, 4489, 4559, 4661, 4717, 4757, 4819, 4891, 4897, 5041, 5063, 5141, 5183, 5251, 5293, 5329, 5429, 5561, 5609, 5723, 5767, 5893, 5917, 5963, 6059, 6241, 6319, 6497, 6499, 6557, 6887, 6889, 7031, 7081, 7387, 7663, 7921, 8051, 8633, 9409, 10201, 10403, 10609, 10807, 11009, 11021, 11227, 11413, 11449, 11639, 11663, 11881, 12091, 12317, 12769, 12827, 13081, 13231, 13493, 13589, 13837, 13843, 14017, 14039, 14111, 14279, 14317, 14351, 14659, 14803, 14873, 14933, 15049, 15151, 15251, 15347, 15481, 15553, 15707, 15857, 15943, 16129, 16157, 16171, 16241, 16459, 16463, 16637, 16789, 16799, 16837, 16867, 17063, 17113, 17161, 17201, 17399, 17441, 17473, 17653, 17741, 17767, 17819, 17869, 17947, 18079, 18203, 18209, 18281, 18419, 18437, 18511, 18643, 18769, 18857, 18871, 18923, 19043, 19153, 19177, 19291, 19321, 19367, 19493, 19511, 19519, 19549, 19673, 19729, 19781, 19879, 19897, 19939, 20099, 20227, 20291, 20413, 20437, 20453, 20497, 20567, 20651, 20687, 20701, 20711, 20819, 20989, 21037, 21079, 21209, 21293, 21311, 21353, 21473, 21509, 21583, 21691, 21733, 21809, 21823, 21877, 21971, 22201, 22261, 22331, 22487, 22499, 22523, 22577, 22657, 22663, 22733, 22801, 22879, 22927, 22969, 22987, 22999, 23129, 23213, 23381, 23393, 23449, 23533, 23587, 23701, 23707, 23711, 23843, 23861, 23999, 24047, 24139, 24257, 24287, 24289, 24307, 24341, 24503, 24511, 24523, 24613, 24617, 24649, 24743, 24797, 24823, 24881, 24883, 24931, 24961, 25019, 25021, 25159, 25199, 25217, 25273, 25283, 25351, 25397, 25573, 25591, 25651, 25777, 25787, 25807, 25853, 25877, 25957, 26051, 26069, 26123, 26167, 26219, 26269, 26329, 26441, 26471, 26549, 26563, 26569, 26671, 26797, 26827, 26857, 26969, 26989, 27007, 27029, 27089, 27161, 27169, 27221, 27233, 27263, 27331, 27359, 27371, 27383, 27499, 27641, 27661, 27707, 27889, 27913, 27977, 28013, 28103, 28141, 28199, 28321, 28363, 28381, 28417, 28459, 28531, 28583, 28667, 28757, 28783, 28829, 28841, 28891, 28907, 28943, 28997, 29041, 29083, 29143, 29149, 29177, 29213, 29321, 29329, 29353, 29503, 29539, 29591, 29593, 29639, 29651, 29719, 29737, 29747, 29893, 29929, 29987, 29999, 30049, 30067, 30179, 30193, 30227, 30281, 30301, 30353, 30397, 30523, 30551, 30607, 30623, 30629, 30847, 30929, 30967, 30997, 31007, 31099, 31133, 31243, 31301, 31309, 31313, 31351, 31373, 31411, 31439, 31459, 31553, 31571, 31613, 31621, 31753, 31831, 31861, 31877, 31897, 31921, 31937, 31979, 32017, 32033, 32041, 32111, 32231, 32239, 32387, 32399, 32437, 32639, 32651, 32743, 32761, 32849, 32881, 32899, 33017, 33043, 33109, 33127, 33221, 33227, 33233, 33277, 33389, 33401, 33431, 33463, 33491, 33499, 33667, 33673, 33823, 33899, 33919, 34037, 34081, 34093, 34117, 34121, 34163, 34189, 34277, 34387, 34393, 34417, 34427, 34453, 34547.

Distribution of the remainders when the numbers in this family are divided by n=2, 3,..., 11. (I took into account 7407840 values, from 4 to 999999863).

n\r 0  1 
247407836 2 
3437048793702957 3 
41370476033703076 4 
541852489185144118514431852463 5 
6137048771323702956 6 
74123495912347931234285123502812343161234455 7 
801853197118514701185156321851606 8 
9112348401234339112350021234307212350371234311 9 
101185248801851443231185144101852461 10 
1121741053740590740991740851740874740546740602740555741137740620

A pictorial representation of the table above
motab
Imagine to divide the members of this family by a number n and compute the remainders. Should they be uniformly distributed, each remainder from 0 to n-1 would be obtained in about (1/n)-th of the cases. This outcome is represented by a white square. Reddish (resp. bluish) squares represent remainders which appear more (resp. less) frequently than 1/n.