16128 has 54 divisors (see below), whose sum is σ = 53144. Its totient is φ = 4608.

The previous prime is 16127. The next prime is 16139. The reversal of 16128 is 82161.

Subtracting from 16128 its sum of digits (18), we obtain a triangular number (16110 = T_{179}).

Adding to 16128 its reverse (82161), we get a palindrome (98289).

It can be divided in two parts, 16 and 128, that multiplied together give a 11-th power (2048 = 2^{11}).

It is a Cunningham number, because it is equal to 127^{2}-1.

It is a super-2 number, since 2×16128^{2} = 520224768, which contains 22 as substring.

It is a Harshad number since it is a multiple of its sum of digits (18).

It is a nude number because it is divisible by every one of its digits and also a Zuckerman number because it is divisible by the product of its digits.

Its product of digits (96) is a multiple of the sum of its prime divisors (12).

It is a nialpdrome in base 2, base 4 and base 12.

It is a zygodrome in base 2 and base 4.

It is a self number, because there is not a number *n* which added to its sum of digits gives 16128.

It is a congruent number.

It is not an unprimeable number, because it can be changed into a prime (16127) by changing a digit.

It is a polite number, since it can be written in 5 ways as a sum of consecutive naturals, for example, 2301 + ... + 2307.

2^{16128} is an apocalyptic number.

16128 is a gapful number since it is divisible by the number (18) formed by its first and last digit.

It is an amenable number.

It is a practical number, because each smaller number is the sum of distinct divisors of 16128, and also a Zumkeller number, because its divisors can be partitioned in two sets with the same sum (26572).

16128 is an abundant number, since it is smaller than the sum of its proper divisors (37016).

It is a pseudoperfect number, because it is the sum of a subset of its proper divisors.

16128 is an equidigital number, since it uses as much as digits as its factorization.

16128 is an evil number, because the sum of its binary digits is even.

The sum of its prime factors is 29 (or 12 counting only the distinct ones).

The product of its digits is 96, while the sum is 18.

The square root of 16128 is about 126.9960629311. The cubic root of 16128 is about 25.2654383906.

The spelling of 16128 in words is "sixteen thousand, one hundred twenty-eight".

Divisors: 1 2 3 4 6 7 8 9 12 14 16 18 21 24 28 32 36 42 48 56 63 64 72 84 96 112 126 128 144 168 192 224 252 256 288 336 384 448 504 576 672 768 896 1008 1152 1344 1792 2016 2304 2688 4032 5376 8064 16128

• e-mail: info -at- numbersaplenty.com • Privacy notice • done in 0.084 sec. • engine limits •